World Journal of Microbiology and Biotechnology
2014
In the present study, the biosynthesis of silver nanoparticles (AgNPs) using Neurospora intermedia, as a new non-pathogenic fungus was investigated. For determination of biomass harvesting time, the effect of fungal incubation period on nanoparticle formation was investigated using UV–visible spectroscopy. Then, AgNPs were synthesized using both culture supernatant and cell-free filtrate of the fungus. Two different volume ratios (1:100 and 1:1) of the culture supernatant to the silver nitrate were employed for AgNP synthesis. In addition, cell-free filtrate and silver nitrate were mixed in presence and absence of light. Smallest average size and highest productivity were obtained when using equal volumes of the culture supernatant and silver nitrate solution as confirmed by UV–visible spectra of colloidal AgNPs. Comparing the UV–visible spectra revealed that using cell-free filtrate for AgNP synthesis resulted in the formation of particles with higher stability and monodispersity than using culture supernatant. The absence of light in cell-free filtrate mediated synthesis led to the formation of nanoparticles with the lowest rate and the highest monodispersity. The presence of elemental silver in all prepared samples was confirmed using EDX, while the crystalline nature of synthesized particles was verified by XRD. FTIR results showed the presence of functional groups which reduce Ag+ and stabilize AgNPs. The presence of nitrate reductase was confirmed in the cell-free filtrate of the fungus suggesting the potential role of this enzyme in AgNP synthesis. Synthesized particles showed significant antibacterial activity against E. coli as confirmed by examining the growth curve of bacterial cells exposed to AgNPs.