Ashori, A.

Polymers & the Environment 18 (1): 65–70.

2010

Hybrid composites of thermoplastic biofiber reinforced with waste newspaper fiber (NF) and poplar wood flour (WF) were prepared. The weight ratio of the lignocellulosic materials to polymer was 30:70 (w:w).
Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were also used as the polymer matrix and coupling agent, respectively. The mechanical properties, morphology and thermal properties were investigated. The obtained results showed that tensile and flexural modulus of the composites were significantly enhanced with addition of biofibers in both types (fiber and flour), as compared with pure PP. However, the increasing in WF content substantially reduced the tensile, flexural and impact modulus, but improved the thermal stability. This effect is explained by variations in fiber morphological
properties and thermal degradation. Increasing fiber aspect ratio improved mechanical properties. The effect of fiber size on impact was minimal compared to the effects of fiber content. Scanning electron microscopy has shown that the composite, with coupling agent, promotes better fiber–matrix interaction. The largest improvement on the thermal stability of hybrid composites was achieved when WF was
added more. In all cases, the degradation temperatures shifted to higher values after addition of MAPP. This work clearly showed that biofiber materials in both forms of fiber and flour could be effectively used as reinforcing elements in thermoplastic PP matrix.

Iranian Research Organization for Science and Technology
Department of Chemical Technologies
Last updated on Dec - 05 2024
All rights reserved by IROST 1980-2024